

Daily Tutorial Sheet-9 Level - 2

106.(D)
$$A \Rightarrow H(1s^1)$$

$$B \Rightarrow He(1s^2)$$

$$C \Rightarrow Li(1s^22s^1)$$

$$A_1 = IE_1(A)$$

$$A_1 = IE_1(A)$$

$$B_2 = IE_2(B)$$

$$B_1 = IE_1(B)$$

$$C_2 = IE_2(C)$$

$$C_1 = IE_1(C)$$

$$\mathrm{C}_{3}=\mathrm{IE}_{3}\left(\mathrm{C}\right)$$

$$B_1>A_1>C_1$$

$$\mathsf{C}_3 > \mathsf{B}_2 > \mathsf{A}_1$$

$$C_3 > C_2 > B_2$$

$$Li^{2+} > He^+ > H$$

$$Li^{2+} > Li^+ > He^+$$

$$1s^2$$
 $1s^1$ $2s^1$

$$1s^1$$
 $1s^1$ $1s^1$

$$1s^2$$
 $1s^2$ $1s^1$

107.(D) (a) Se
$$\xrightarrow{\text{I.E.}_1}$$
 Se⁺ $\xrightarrow{\text{I.E.}_2}$ Se⁺ $\xrightarrow{\text{An}^2}$

$$\underset{4p^3}{\text{As}} \xrightarrow{\text{I.E.}_1} \underset{4p^2}{\text{As}^+} \xrightarrow{\text{I.E.}_2} \underset{4p^1}{\text{As}^{2+}}$$

(b)
$$C \longrightarrow C^+ \longrightarrow C^2 \longrightarrow C^{2+} \longrightarrow$$

$$\underset{2p^{3}}{\overset{N}{\longrightarrow}}\underset{2p^{2}}{\overset{N^{+}}{\longrightarrow}}\underset{2p^{1}}{\overset{N^{2+}}{\longrightarrow}}$$

$$\underset{2p^4}{O} \xrightarrow{I.E._1} \underset{2p^3}{O^+} \xrightarrow{I.E._2} \underset{2p^2}{O^{2+}} \xrightarrow{I.E._3} \underset{2p^1}{O^{3-}}$$

- In respective period, noble gases have highest I.E.
- 108.(C) R is p-block element, because difference between IE₂ and IE₃ is not very high as compared to between IE_1 and IE_2 ; hence stable oxidation state of R will be higher than +2.

109.(A)
$$A \longrightarrow A^{+} I.E. I.E. = |E.A|$$

 $A^+ \longrightarrow A$ E.A as they are opposite to each other

110.(A) Along the period, EGE increases so, F > O; Cl > S

Also E.N. of Cl < F & S < O because of small size of F & O, they become unstable after gain of e due to interelectronic repulsion which doesn't happen in case of Cl, S due to their comparatively bigger size.

111.(D)
$$O^- \xrightarrow{e^-} O^{-2}$$
 EGE = +ve

$$S^- \xrightarrow{e^-} S^{-2}$$
 EGE = +ve

EGE is positive when an electron is added to anion (as repulsion between negative charges) and EGE is more (+ve) in case of O because of it small size, so charge density increases & hence more repulsion.

112.(B)
$$O^- \xrightarrow{e^-} O^{-2}$$
 EGE = +ve

$$S^- \xrightarrow{e^-} S^{-2}$$
 EGE = +ve

EGE is positive when an electron is added to anion (as repulsion between negative charges) and EGE is more (+ve) in case of O because of it small size, so charge density increases & hence more repulsion.

- **113.(C)** For Halogens E.G.E order Cl > F > Br > I
- EGE is positive when an electron is added to anion (as repulsion between negative charges). 114.(C)
- **115.(B)** Due to smaller size of O, gain in e⁻ causes e⁻ e⁻ repulsion hence energy is required.